55 research outputs found

    Perceived thickness and creaminess modulates the short-term satiating effects of high protein drinks

    Get PDF
    Previous research suggests that increasing beverage protein content enhances subsequent satiety, but whether this effect is entirely attributable to post-ingestive effects of protein or is partly caused by the distinct sensory characteristics imparted by the presence of protein remains unclear. To try and discriminate nutritive from sensory effects of added protein, we contrasted effects of three higher energy (c. 1.2MJ) and one lower energy (LE: 0.35MJ) drink preloads on subsequent appetite and lunch intake. Two higher energy drinks had 44% of energy from protein, one with the sensory characteristics of a juice drink (HP-) and the second thicker and more creamy (HP+). The high-carbohydrate preload (HC+) was matched for thickness and creaminess to the HP+ drink. Participants (healthy male volunteers, n=26) consumed significantly less at lunch after the HP+ (566g) and HC+ (572g) than after HP- (623g) and LE (668g) drinks, although the compensation for drink energy accounted for only 50% of extra energy at best. Appetite ratings indicated that participants felt significantly less hungry and more full immediately before lunch in HP+ and HC+ compared to LE, with HP- intermediate. The finding that protein generated stronger satiety in the context of a thicker creamier drink (HP+ but not HP-), and that an isoenergetic carbohydrate drink (HC+) matched in thickness and creaminess to the HP+ drink generated the same pattern of satiety as HP+ both suggest an important role for these sensory cues in the development of protein-based satiety

    Effect of Animal and Industrial Trans Fatty Acids on HDL and LDL Cholesterol Levels in Humans – A Quantitative Review

    Get PDF
    Background: Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids. Methodology/Principal Findings: We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95% CI 0.044-0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95% CI 0.012-0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012-0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids). Conclusions/Significance: Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol

    Effect of a High Intake of Conjugated Linoleic Acid on Lipoprotein Levels in Healthy Human Subjects

    Get PDF
    Background -Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats. Methodology/Principal Findings - Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (

    The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force

    Get PDF
    AbstractEvidence is presented for a proportional relationship between the extramitochondrial phosphate potential (ΔGexp) and the proton-motive force (Δ\̃gmH+) across the mitochondrial membrane in rat-liver mitochondria oxidising succinate in State 4, when Δ\̃gmH+ is varied by addition of uncouplers or malonate. This relationship was found when precautions were taken to minimise interference with the determination of ΔGpex and Δ\̃gmH+ by intramitochondrial nucleotides, adenylate kinase activity, the quenching method, and Δ\̃gmH+-dependent changes in matrix volume. A non-proportional ΔGpex/Δ\̃gmH+ relationship was obtained when these precautions were omitted. Our results do not support mosaic protonic coupling, but are not necessarily in conflict with other localised coupling schemes

    Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Get PDF
    In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes.Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time

    Models predict change in plasma triglyceride concentrations and long-chain n-3 polyunsaturated fatty acid proportions in healthy participants after fish oil intervention

    Get PDF
    Introduction: Substantial response heterogeneity is commonly seen in dietary intervention trials. In larger datasets, this variability can be exploited to identify predictors, for example genetic and/or phenotypic baseline characteristics, associated with response in an outcome of interest. Objective: Using data from a placebo-controlled crossover study (the FINGEN study), supplementing with two doses of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), the primary goal of this analysis was to develop models to predict change in concentrations of plasma triglycerides (TG), and in the plasma phosphatidylcholine (PC) LC n-3 PUFAs eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), after fish oil (FO) supplementation. A secondary goal was to establish if clustering of data prior to FO supplementation would lead to identification of groups of participants who responded differentially. Methods: To generate models for the outcomes of interest, variable selection methods (forward and backward stepwise selection, LASSO and the Boruta algorithm) were applied to identify suitable predictors. The final model was chosen based on the lowest validation set root mean squared error (RMSE) after applying each method across multiple imputed datasets. Unsupervised clustering of data prior to FO supplementation was implemented using k-medoids and hierarchical clustering, with cluster membership compared with changes in plasma TG and plasma PC EPA + DHA. Results: Models for predicting response showed a greater TG-lowering after 1.8 g/day EPA + DHA with lower pre-intervention levels of plasma insulin, LDL cholesterol, C20:3n-6 and saturated fat consumption, but higher pre-intervention levels of plasma TG, and serum IL-10 and VCAM-1. Models also showed greater increases in plasma PC EPA + DHA with age and female sex. There were no statistically significant differences in PC EPA + DHA and TG responses between baseline clusters. Conclusion: Our models established new predictors of response in TG (plasma insulin, LDL cholesterol, C20:3n-6, saturated fat consumption, TG, IL-10 and VCAM-1) and in PC EPA + DHA (age and sex) upon intervention with fish oil. We demonstrate how application of statistical methods can provide new insights for precision nutrition, by predicting participants who are most likely to respond beneficially to nutritional interventions

    Drought in the Anthropocene

    Get PDF
    Drought management is inefficient because feedbacks between drought and people are not fully understood. In this human-influenced era, we need to rethink the concept of drought to include the human role in mitigating and enhancing drought

    Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches

    Get PDF
    In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes. Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include: (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future

    Discovertebral (Andersson) lesions in severe ankylosing spondylitis: a study using MRI and conventional radiography

    Get PDF
    The objective of this study is to investigate the prevalence of Andersson lesions (AL) in ankylosing spondylitis (AS) patients who will start anti-tumor necrosis factor (TNF) treatment. Radiographs and magnetic resonance imaging (MRI) of the spine were performed before therapy with anti-TNF. ALs were defined as discovertebral endplate destructions on MRI, associated with bone marrow edema and fat replacement or sclerosis, a decreased signal on T1, enhancement after contrast administration (gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)), and increased signal on T2 and short tau inversion recovery (STIR). Additionally, conventional radiography showed a fracture line, irregular endplates, and increased sclerosis of adjacent vertebral bodies. Fifty-six AS patients were included, 68% males, mean age of 43 years, and mean disease duration of 11 years. The mean bath ankylosing spondylitis disease activity index was 6.4, and 24% of all patients had ankylosis. Only one patient showed a discovertebral abnormality with bone marrow edema of more than 50% of the vertebral bodies adjacent to the intervertebral disk of T7/T8 and T9/T10, a hypodense signal area on T1, and a high signal on STIR. Irregular endplates were depicted, and T1 after Gd-DTPA demonstrated high signal intensity around the disk margins. However, no fracture line was visible on conventional radiology, and therefore, this case was not considered to be an AL. No AL was detected in our AS patients, who were candidates for anti-TNF treatment. One patient showed a discovertebral abnormality on MRI, without a fracture line on conventional radiology. The relative small proportion of patients with a long-established disease might explain this finding for, particularly, an ankylosed spine is prone to develop an AL
    corecore